Collaborative sliced inverse regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized Sliced Inverse Regression

We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.

متن کامل

Student Sliced Inverse Regression

Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed ...

متن کامل

Asymptotics of Sliced Inverse Regression

Sliced Inverse Regression is a method for reducing the dimension of the explanatory variables x in non-parametric regression problems. Li (1991) discussed a version of this method which begins with a partition of the range of y into slices so that the conditional covariance matrix of x given y can be estimated by the sample covariance matrix within each slice. After that the mean of the conditi...

متن کامل

Gaussian Regularized Sliced Inverse Regression

Sliced Inverse Regression (SIR) is an effective method for dimension reduction in high-dimensional regression problems. The original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a regularization technique has to be used. Our approach...

متن کامل

A note on shrinkage sliced inverse regression

We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can be employed for both single-index and multiple-index models. Simulation studies suggest that the new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 2016

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610926.2015.1116578